Spotting Malaria reliably
Track down infections easily with highly sensitive Malaria-LAMP even in low-prevalent settings
“Diagnostic testing and treatment Research is required to develop tools that can more readily detect low-level parasitaemia in asymptomatic carriers and ascertain the effectiveness of different screening strategies both at higher transmission levels, in order to appropriately target interventions, and when countries enter the elimination phase.”

Children aged under five years are the most vulnerable group. They accounted for 61% of all malaria deaths worldwide (2017)

Malaria deaths

- 219 million malaria cases in 87 countries
- 435,000 deaths worldwide in 2017

WHO Strategy

- 90% malaria incidence and mortality rates
- The WHO Malaria strategy aims to reduce global malaria incidence and mortality rates by 90% until 2030

Sensitivity

- < 70%
- 80–90%
- 96–100%

Due to their limited sensitivities of 80–90% and < 70%, microscopy and RDT’s do not provide reliable results in low-transmission areas

Diagnosis of malaria calls for a highly sensitive and fast method

Robustness

Performance

Ease of use

Local service & support
Plasmodium vivax: A pathogen with significant challenges

“P. vivax malaria is difficult to detect and treat because the parasitaemia is typically low in comparison to that of P. falciparum, and current diagnostic tests cannot detect dormant forms residing in the liver.”

WHO (2015) Control and Elimination of Plasmodium vivax Malaria – A technical brief

Spread of Plasmodium vivax

- More than a third of the world’s population, mostly in Asia and Latin America, is at risk of infection with *P. vivax* malaria

Cases worldwide

- Despite tremendous progress in reducing *P. vivax* malaria since 2000, there were 8.5 million cases globally in 2016

Predomination in elimination countries

- *P. vivax* predominates mainly in the approaching Malaria elimination countries defined by the WHO. The parasite is responsible for more than 70% of malaria cases in countries with less than 5000 cases per year

Challenges in the diagnosis of Plasmodium vivax Malaria

- *P. vivax* often has a lower parasite density (typically 10 times lower) than *P. falciparum*, making it difficult to detect *P. vivax* infections with Rapid Diagnostic Tests and microscopy.

- The parasite also has a dormant liver stage that cannot be detected by current diagnostic tools.

- Many Rapid Diagnostic Tests are unable to distinguish mixed Pf-Pv infections.
Malaria-LAMP
Detection of asymptomatic, sub-microscopic infections

“Sub-microscopic *P. falciparum* and *P. vivax* infections are common in both low- and high-transmission settings. Use of NAA methods in malaria programmes should be considered for epidemiological research and surveys to map sub-microscopic infections in low-transmission areas. NAA methods might also be used for identifying foci for special interventions in elimination settings.”

WHO Policy brief on malaria diagnostic in low transmission settings, September 2014

High reliability and robustness by excellent test performance

- High sensitivity and specificity with a detection limit of 1 parasite/µl*
- Dried reagents: optimally suited for use in remote settings
- Patient friendly: only small sample volume (30 – 60 µl) is needed and different types of blood samples can be used
- Test results for a differentiated diagnosis: Differentiation between *Plasmodium pan* species, *Plasmodium falciparum* and *Plasmodium vivax*
- Recognized method: Listed in the WHO Policy brief on malaria diagnostic in low-transmission settings

Malaria-LAMP as a valuable solution in low-transmission areas

<table>
<thead>
<tr>
<th>Malaria-LAMP</th>
<th>Sample number</th>
<th>Sensitivity*</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>González et al. (2012)⁸</td>
<td>705</td>
<td>Pan: 97.0 % Pf: 98.4 %</td>
<td>Pan: 99.2 % Pf: 98.1 %</td>
</tr>
<tr>
<td>Sattabongkat et al. (2014)⁹</td>
<td>1017</td>
<td>95.7 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Aydin-Schmidt et al. (2014)¹⁰</td>
<td>1330</td>
<td>Fever patients: 91.5 – 98.3 % Asymptomatic patients: 90.7 – 97 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Marti et al. (2015)¹¹</td>
<td>205</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Lau et al. (2016)¹²</td>
<td>201</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Tambo et al. (2018)¹³</td>
<td>3151</td>
<td>95.5 %</td>
<td>99.92 %</td>
</tr>
</tbody>
</table>

List of selected publications. A comprehensive list is available at: www.human.de/lamp/pub

* P. pan if not stated otherwise
Loopamp™ Systems

Two solutions for different fields of application

Easy-to-use Loopamp™ technology for primary and peripheral laboratories

Specially designed as a consolidated platform for sample preparation, amplification and easy visual result reading, HumaLoop M facilitates sensitive and reliable detection for a variety of Loopamp™ tropic pathogens assays, e.g. Loopamp™ Malaria Pan, Loopamp™ Malaria Pf and Loopamp™ Malaria Pv.

- For small to medium throughput: up to 16 tests/run or up to 70 samples/day
- Preinstalled and fixed incubation times and temperatures for Loopamp™ assays
- Consolidated processing: sample preparation, amplification and detection on a single instrument
- Perfect for use in remote areas with independent power solution by solar panel and battery system
- Explicit interpretation by visual reading of fluorescence signals
- Fast reporting: results in 1-2 h

Scalable Loopamp™ system for reference and regional laboratories

HumaTurb system allows for the real-time detection of turbidity based upon magnesium-pyrophosphate which is generated during the amplification process. The entire system consists of HumaTurb C and A. The HumaTurb C for the setup and control of incubation time and temperature, necessary for amplification. The amplification itself takes place in the second part of the system, the HumaTurb A. In case of DNA purification with the Loopamp™ PURE DNA Extraction kit, sample lysis is performed with HumaHeat.

- For medium to high throughput: up to 96 tests/run (if expanded with 6 HumaTurb A units)
- Different Loopamp™ assays can be performed in one run
- Flexible data transfer via USB and LIS connectivity
- Built-in printer
- Result reporting
1. Sample transfer and lysis

Transfer 30 µl blood and 30 µl 344 mM NaCl with a pipette into the heating tube.
Mix well by shaking.
Incubate the tube in the heating unit of HumaLoop M or HumaHeat for 5 min at 75°C.

2. Loopamp™ PURE DNA extraction

Screw the heating tube onto the adsorbent tube.
Afterwards, shake the tube until a milky solution is obtained.
Screw the injection cap onto the adsorbent tube. Extract the DNA into the reaction tube.

3. Loop-mediated isothermal amplification

Incubate the tube for 2 min at room temperature to reconstitute the reagents in the cap.
Mix the tube several times and tap until the reaction mix is collected at the bottom of the tube.
Incubate the reaction tube in the HumaLoop M reaction unit or HumaTurb A for 45 min at 65°C.

4. Result reading: HumaLoop M

Insert the tubes into the detection unit and turn the UV light on.
Positive results light green, negative results show no fluorescence.

4. Result reading: HumaTurb C

Turbidity measurement in real-time.

*Also feasible with boil & spin method
Malaria-LAMP product overview

Loopamp™ Malaria Pan Detection Kit
for the qualitative detection of *Plasmodium pan species*
10 x 48 tests REF: 974000 2 x 48 tests REF: 977000

Loopamp™ Malaria Pf Detection Kit
for the qualitative detection of *Plasmodium falciparum species*
2 x 48 tests REF: 978000

Loopamp™ Malaria Pv Detection Kit
for the qualitative detection of *Plasmodium vivax species*
2 x 48 tests REF: 975000

Loopamp™ PURE DNA Extraction Kit
For the extraction of DNA of the sample
Specimens: Fresh blood, blood with heparin, blood spots on filter paper
90 tests REF: 970000

HumaHeat
Incubator for the sample lysis of the Loopamp™ PURE heating tubes
Mandatory for HumaTurb C + A REF: 964000

HumaLoop M
Incubator for sample processing, amplification and visual result reading REF: 962000

HumaTurb C + A
HumaTurb C = Control unit displaying real-time turbidity measurements
HumaTurb A = Amplification unit REF: 963200

HumaTurb A
HumaTurb C is connectable with up to six HumaTurb A amplification units REF: 963100

HumaTurb C
Control unit displaying real-time turbidity measurements REF: 963100

HuMax ITA
Bench-top centrifuge with preinstalled program for the incubation and mixing of Loopamp™ reaction tubes REF: 980000

Solar Panel (100W)
Foldable solar panel for charging the battery system REF: 18965/100

Portable Battery System (220V, 300W)
LAMP devices can be operated up to three runs REF: 18965/220

Providing IVD products for regions with limited infrastructure or remote areas for more than 45 years

Established distribution network in more than 160 countries

Offering solutions for all relevant areas of humanitarian aid, coordinated and controlled supply chains, local service and support

Find more information about LAMP-related products at www.human.de/lamp or www.finddx.org